Reliability of Microelectromechanical Systems (MEMS)
نویسندگان
چکیده
Reliability is a key parameter for the eventual prevalence of microelectromechanical systems (MEMS) as either sub-components or as standalone products. Traditionally, micromachined components have been made by separating the micromachined chip design and fabrication processes from the packaging and reliability issues. This “evolutionary” partitioning of microsystems has led to long incubation times for the commercial success of MEMS based products. Packaging involves bringing together (i) multitude of design geometries of the various constituent parts, (ii) interfacing diverse materials, (iii) providing required input/output connections and (iv) optimization of all of these for performance, cost and reliability. On the other hand, reliability depends on (i) the mutual compatibility of the various parts with respect to the desired functionality, and (ii) the designs and materials from the standpoint of long-term repeatability and performance accuracy. Reliability testing provides techniques for compensation, and an understanding of the catastrophic failure mechanisms in microsystems. It is imperative that the successful design and realization of microsystems or MEMS products must include all levels of packaging and reliability issues from the onset of the project. Although, such a holistic top-down approach poses formidable technical challenges, the problem can be simplified by using the rapidly evolving MEMS infrastructure in the areas of materials, fabrication and design. This paper will discuss, overall MEMS reliability issues and present results on reliability testing of micromachined capacitive pressure sensors for high vacuum and biomedical applications currently being commercialized at Integrated Sensing Systems Inc.
منابع مشابه
The Effect of Material Properties on Sensitivity of the Microelectromechanical Systems Piezoelectric Hydrophone
In this paper, we present mathematical analyses to consider the effect of material properties on the sensitivity of the Microelectromechanical systems (MEMS) piezoelectric hydrophone and improve the sensitivity by choosing the proper material. The selected structure in the present paper is a piezoelectric hydrophone able to work at low frequencies. The piezoelectric hydrophones are widely used ...
متن کاملMEMS reliability from a failure mechanisms perspective
Over the last few years, considerable effort has gone into the study of the failure mechanisms and reliability of microelectromechanical systems (MEMS). Although still very incomplete, our knowledge of the reliability issues relevant to MEMS is growing. This paper provides an overview of MEMS failure mechanisms that are commonly encountered. It focuses on the reliability issues of micro-scale d...
متن کاملCondition assessment and fault prognostics of microelectromechanical systems
Microelectromechanical systems (MEMS) are used in different applications such as automotive, biomedical, aerospace and communication technologies. They create new functionalities and contribute to miniaturize the systems and reduce their costs. However, the reliability of MEMS is one of their major concerns. They suffer from different failure mechanisms which impact their performance, reduce th...
متن کاملMicrochip Oscillators and Clocks Using Microelectromechanical Systems (MEMS) Technology
MEMS-based timing devices offer high reliability (including AEC-Q100 certification for automotive use), extended operating temperatures, small size, and low power consumption. Video surveillance, automotive ADAS, general industrial applications, and data transmission to 10 Gbps are prime areas of usage today. The next milestone will be next-generation MEMS resonators that achieve very low phase...
متن کامل